1,110 research outputs found

    Cohomological rank functions and surfaces of general type with pg=q=2p_g=q=2

    Full text link
    We classify minimal surfaces SS with pg=q=2p_g=q=2 and KS2=5K_S^2=5 or 66

    Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    Get PDF
    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user’s intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems

    Experimental demonstration of a non-destructive controlled-NOT quantum gate for two independent photon-qubits

    Full text link
    Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum information processing. However, the photons, one of the best candidates for qubits, suffer from the lack of strong nonlinear coupling required for quantum logic operations. Here we show how this drawback can be overcome by reporting a proof-of-principle experimental demonstration of a non-destructive controlled-NOT (CNOT) gate for two independent photons using only linear optical elements in conjunction with single-photon sources and conditional dynamics. Moreover, we have exploited the CNOT gate to discriminate all the four Bell-states in a teleportation experiment.Comment: 4 pages, 4 figures, submitte

    2-(2-Furylmethyl­ammonio)ethane­sulfonate methanol solvate

    Get PDF
    The organic mol­ecule of the title compound, C7H11NO4S·CH3OH, is a zwitterion and its furan ring displays positional disorder [occupancy 0.563 (5):0.437 (5)]. The crystal structure is extended into a three-dimensional supra­molecular architecture through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds with participation of the methanol solvent mol­ecules

    Recombinant Expression of Serratia marcescens Outer Membrane Phospholipase A (A1) in Pichia pastoris and Immobilization With Graphene Oxide-Based Fe3O4 Nanoparticles for Rapeseed Oil Degumming

    Get PDF
    Enzymatic degumming is an effective approach to produce nutritional, safe, and healthy refined oil. However, the high cost and low efficiency of phospholipase limit the application of enzymatic degumming. In this study, an 879 bp outer membrane phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h. The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600. A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50°C for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous recycling for the enzymatic degumming of rapeseed oil. This study provided an effective approach for the enzymatic degumming of crude vegetable oil by developing a novel phospholipase and improving the degumming technology

    The Other Press, February 19, 1987

    Get PDF
    <p>Energy profile (in kcal.mol<sup>-1</sup>) of face-on path for Erlotinib bioactivation by the Cpd I model of CYP3A4 and 1A2 in the gas and solvent phases.</p

    Designing a novel high-throughput AlphaLISA assay to quantify plasma NHERF1 as a non-small cell lung cancer biomarker

    Get PDF
    NHERF1 might play a significant role in biological processes including oncogenic transformation and metastasis. Owing to the lack of highly sensitive and quantitative methods of NHERF1 in human plasma, there have been few reports on the plasma levels of NHERF1 and its correlation with cancer. Here, a novel amplified luminescent proximity homogeneous immunoassay (AlphaLISA) has been developed and validated for the quantification of NHERF1 in human plasma. This assay was based on an AlphaScreen detection technique with two different anti-NHERF1 antibodies coupled to donor and acceptor beads, respectively. The developed AlphaLISA assay was further optimized and validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision, recovery, selectivity and interferences. The linear range of NHERF1 in human plasma was 5.00–100 ng mL−1, with an LOD of 2.00 ng mL−1. This AlphaLISA assay has been successfully applied to the quantification of NHERF1 in the plasma from 75 patients with non-small cell lung cancer (NSCLC). The levels of NHERF1 protein in plasma from patients with NSCLC were significantly higher than those in the healthy group (p = 0.0004). Based on the evaluation of the ROC curves, measuring the content of NHERF1 in human plasma could provide a potential diagnostic tool for NSCLC

    Coveting thy neighbors fitness as a means to resolve social dilemmas

    Full text link
    In spatial evolutionary games the fitness of each individual is traditionally determined by the payoffs it obtains upon playing the game with its neighbors. Since defection yields the highest individual benefits, the outlook for cooperators is gloomy. While network reciprocity promotes collaborative efforts, chances of averting the impending social decline are slim if the temptation to defect is strong. It is therefore of interest to identify viable mechanisms that provide additional support for the evolution of cooperation. Inspired by the fact that the environment may be just as important as inheritance for individual development, we introduce a simple switch that allows a player to either keep its original payoff or use the average payoff of all its neighbors. Depending on which payoff is higher, the influence of either option can be tuned by means of a single parameter. We show that, in general, taking into account the environment promotes cooperation. Yet coveting the fitness of one's neighbors too strongly is not optimal. In fact, cooperation thrives best only if the influence of payoffs obtained in the traditional way is equal to that of the average payoff of the neighborhood. We present results for the prisoner's dilemma and the snowdrift game, for different levels of uncertainty governing the strategy adoption process, and for different neighborhood sizes. Our approach outlines a viable route to increased levels of cooperative behavior in structured populations, but one that requires a thoughtful implementation.Comment: 10 two-column pages, 5 figures; accepted for publication in Journal of Theoretical Biolog
    corecore